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Abstract—A graphical method is employed to give a generalized bird’s-eye view of the exist.ing data for

critical heat flux (CHF) in internally and uniformly heated vertical annuli with zero inlet subcooling. 301 data

points collected from 25 sources are used for this purpose, including 7 different fluids (water, R-12, R-114,

acetone, toluene, monoisopropyl-biphenyl, and sodium), axial length of heated rod from 0.0762 to 8.84 m,

outer diameter of heated rod from 0.00500 to 0.0964 m, inner diameter of unheated shroud tube from 0.0127
to 0.101 m, and vapor/liquid density ratio from 0.0000580 to 0.160.

NOMENCLATURE
dy,,  heated equivalent diameter [m], equation (3)
for inside uniform heating;
d, O.D. of heated rod [m];
d,, LD. of unheated shroud tube [m];

G,  mass velocity [kgm 2s71];

latent heat of evaporation [Jkg~'];
enthalpy of inlet subcooling [Jkg™'];
I, axial length of heated rod [m];

P absolute pressure [bar];

q. critical heat flux [Wm™2];

9cos 9. for AHi =0 [wm——2];

AT;, inlet subcooling temperature [°C].

Greek symbols
p,  density of liquid [kgm™3];
p»  density of vapor [kgm™3];
o, surface tension [Nm™!];
ja quality (x,,: exit quality, y;,: inlet quality).

1. INTRODUCTION

RECENTLY, the author made studies [1-3] of genera-
lized correlation equations for critical heat flux (CHF)
of forced convection boiling in uniformly heated
vertical tubes, and it was followed by a study [4] in
which a graphical method was evolved to give a
generalized bird’s-eye view of the existing data of CHF
in case of zero inlet subcooling.

On the other hand, existing data of CHF in uni-
formly heated vertical annuli were also analyzed by
the author [5], revealing that the data of CHF in
annuli with inside heating are correlated by a set of
proper correlation equations, while CHF in annuli
with outside heating can be correlated by making use
of the above-mentioned correlation equations of CHF
in vertical tubes. Then, following the similar way as in
the case of tubes, an additional study is attempted in
the present paper to give a generalized graphic repre-

sentation of the existing data of CHF in internally
heated annuli with zero inlet subcooling.t

2. COLLECTION OF g,, DATA
2.1. Method of obtaining q., data

From the sources [6-31] listed in Table 1, the data
of g, are obtained for pulsation-free upflow, mostly by
the following normal methods (i) and (ii), and for the
rest, by two exceptional methods (iii) and (iv).

(i) As for the data-source providing the variation of
q. with AH, (or AT, x;, etc.) for fixed G such as shown
inFigs 1 and 2, if there are enough data points up to the
vicinity of AH; = 0, g, can be estimated by the
extrapolation as AH, (or AT, y;, etc.) — 0. Knoebel et
al. [19], who presented the data of g, including those of
Fig. 2, gave the following empirical equation to
correlate their data of g, in the range of AT, > 25°C
{that is, excluding data below 25°C subcooling from
the correlation):

q.[Wm™?] = 4.844 x 105(1+ 0.169¥[ms~'])
(1 +0.12AT[°C]) (1)

where V is the inlet velocity of water ; and the broken
line shown in Fig. 2 represents equation (1). However,
the author’s correlation of CHF of forced convection
boiling (cf. [1,2] for tubes and [5] for annuli) regards
the result of Fig. 2 only as belonging to a characteristic
regime called N-regime, which is distinguished by non-
linear g.—~AH, relationship, and q,, is determined by the
conventional extrapolation as AT; — 0 in Fig. 2.

(ii) As for the data-source providing the variation of
g, with y,, for fixed G, the relation of g, vs AH; can be
derived from the following heat balance equation for

* The effect of inlet subcooling on CHF can be estimated
theoretically in the same way as that shown for CHF in
vertical tubes [3], so that the discussion on the effect of inlet
subcooling is omitted.
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FI1G. 1. Examples of the linear relationship between g, and

AH, (data from Table A of Mortimore and Beus [25]).

uniformly heated annuli:
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FiG. 2. An example of the non-linear relationship between g,
and AH, (data from Table B-1 of Knoebel et al. [ 19] excluding
the data for heaters bowed or with flaws etc.).
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annuli with inside heating as follows (cf. [S]

! ! ! .
R (3
dy, di (do/d)* 1

Therefore, the method (i) applies to the relation of g, vs
AH; thus obtained.

(iii) Data-sources [8, 10, 38] present data in the
form of (i), but the data are concerned with the
uniform heat flux experiment with mixed-inlet-
condition (thatis, AH; < Qand y,, > 0). In this case, if
the imaginary length /, determined as [ = /1
(Xin/Yex)] for the actual length I used in the experiment.
is assumed, the mixed-inlet-condition of AH; < 0 can
be formally transformed to that of AH; = 0. Then,
according to the author’s study [3] of CHF in tubes.
the experimental data of CHF for AH; < 0 can be
approximately correlated with the imaginary length {
mentioned above if exit quality is in the vicinity of
unity. Therefore, taking this fact into consideration in
the present paper too, 5 data (Run No. 691 -695} with
Xex > 0.75 are adopted from Table II of [8], and 12
data (Run No. 2582-2588 and 2599-2604) with x,, =
0.75 are adopted from Table 2 of [ 10}, but no data are
adopted from [37] because all data are of y,, < 0.7%.

(iv) Data-sources [22-24] give the data for in-
dependent sets of G, AH; and ¢. Therefore, g, is
estimated, through empirical equations (14)and (16) of
the preceding paper [ 5], from the data at AT, = 10°C,
for which AH,/H /, is restricted to small values so that
serious error cannot arise for the estimation of ¢,

2.2. Note on the data

[11] reports two groups of experiments carried out
at atmospheric pressure and at 59.9 bar respectively
with different apparatus, and the data at atmospheric
pressure show quite irregular natures, presumably duc
to the lack of throttling measures to prevent pulsation
flows, so that only the data at 59.9 bar are employed.
For the experiment of [17], the rod was heated
indirectly with a coiled ribbon electric heater set up in
the rod, accordingly there is the possibility of some
error not only in the uniformity of heat flux distri-
bution but also in the axial length of heated surface of
rod. As for experiments reported in [19] for heavy
water and aluminum rods, no data were obtained for
CHF in the vicinity of AT, = 0 so that ¢, cannot be
determined, and consequently only the data for light
water on a stainless steel rod such as exemplified in Fig.
2 are employed. Experimental data of [21] are given
with very small figures so that there is the possibility of
low accuracies for q,, derived from these data. The data
for sodium presented in [31] show a considerable
scattering, and the data obtained at the pressure of 0.15
bar for the flow rate of 0.0567kgs™! alone are
employed in this study because of comparatively good
order. The data of CHF in annuli with inside heating
given in [38] cannot be utilized because of lacking the
data of mass velocity G.
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FiG. 3. Generalized graphic representation of g, data. (L}: L-

regime, (H): H-regime, (N): N-regime, (b): equation {4), (c):

equation (5) with p,/p, = 0.048, (d): equation (6) with p,/p, =
0.048, {f): equation {7).

3. GRAPRIC REPRESENTATION OF 4, DATA
3.1. Representation of q, data

All the experimental data of ¢, collected in Section 2
arelisted in Table 1 along with the kind of test fluid, the
range of experimental conditions, and the number of
collected data, where it should be noted that physical
properties estimated by the method of [ 35, 36] are used
for monoisopropylbiphenyl (MIPB) alone. Then, as-
suming the possibility of correlating the data of g,
with four dimensionless groups of q.,/GH ., p./on
ap,/G*, and /d,,. 13 graphs are prepared for distinct
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Table 2. Symbols used to specify the fluids in Fig. 3

Ref. No. Fluid Symbol Ref. No. Fluid Symbol
6-25 Water O 29 Toluene ]
26, 27 R-12 A 30 MIPB -
28 R-114 v 31 Sodium X
29 Acetone [}

values of l/d,, as shown in Fig. 3 and the data of
4../GH ;, classified to each graph depending on //d,,
are plotted against ap,/G*! (see Tables 3 and 4 for the
division of data by I/d,, to each graph and see Section
3.3 for the treatment of the effect of p,/p,). Data
symbols shown in Table 2 are used in Fig. 3 to
discriminate the kind of fluid.

3.2. Representation of the author’s correlation

equations

Based on the results of the author’s study [5], the
characteristic regimes L, H and N (cf. [ 1] for the origin
of these names), the correlation lines (b)—(d), and the
boundary (f) between H- and N-regime are shown in
Fig. 3 applying the following equations:

0.043
—025(2~L L
Gl ld,,
H- and N-regime,

0.133
=0.12 (”-")
4]

. (o7 13 1
G 1 + 0.0081l/d,,
where p,/p, = 0.048 for (c) in Fig. 3.

0.133
=022 <&>
Pi

L-regime,

qCO
GH,,

(b):

qCD

(c): GH,,

&)

4co

@ GHfa

0.433 0.171
N ( op (t/dye) ©)
Gl 1+ 0.00811/d,,
where p,/p, = 0.048 for (d) in Fig. 3.
Boundary between H- and N-regime,
ap; 0.0206\*-7
: — =~ . 7
M) o (Wh )

Among the above equations, equation (4) for L-regime
is independent of p,/p,, it can be represented by a line
(b) in each graph of Fig. 3. On the other hand,
equations (5) and (6) for H- and N-regime are subject
to the influence of p,/p,, so that the prediction of these
equations is given by lines (¢) and (d) in Fig. 3 only for
the case of p,/p, = 0.048, which corresponds to the
density ratio of saturated steam and water at 68.5 bar.

3.3. Effects of p,/p,

Figure 3 shows that almost all the data points of g,
collected in this paper distribute within H- and N-
regime. According to equations (5) and (6), the effect of
0,/p,on CHF in H- and N-regime may be presumed to
be in the mere degree of (p,/p,)°* 3. Therefore, the data
of g, listed in Table 1 are divided into two groups of
Tables 3 and 4 depending on the magnitude of p,/p,. As
for the data listed in Table 3 with the range of p,/p,
between 0.0103 and 0.160, p,/p, is not far apart from
0.048 so that experimental data of g, have been
plotted in Fig. 3 without any artificial modification of
data. However, as for 9 data listed in Table 4 with the

Table 3. Experimental range of //d,, and p,/p, for the data of Fig. 3,
excluding the data of Table 4

Nominal z Pe 102
l/dy, dye 0 Ref. No.
5 7.05 1.03 30
10 7.64-14.5 4.05-16.0 11,18,20,21
25 18.4-26.8 4.84-16.0 9,12,21
35 33.8-409 4.84-16.0 12,21
50 42.0-59.0 2.61-8.49 7,9,12,13,15,27
75 64.6-85.5 4.82-8.49 7,12,27
100 90.3-116 1.83-16.0 12,13,21,28
150 123-172 4.84-13.5 12,14,15,17,22,23,25
200 173-180 484 12,14,28
300 283-348 2.13-4.84 10,12, 14, 16,26
400 316-443 2.13-484 6,8,10,15,16
500 509-553 2.13 8,10

HMT 24:1 - H
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Table 4. Data with comparatively low values of p,/p, in Fig. 3

Nominal ,[ Pe 102 No. of  Ref.
I/d,, dye 7 data No.
1 115 0.290-0385 2 [29]
25 233 0.123-0.224 3 [19]
35 36.0 0.00580-0.0211 4 [31]

9

range of p,/p; between 0.0000580 and 0.00385, p,/p, is
remarkably lower than 0.048, so that the correction of
multiplying [0.048/(p,/p;)]°'** to q,,/GH ;, has been
made to be plotted in Fig. 3.

4. DISCUSSION OF THE RESULT OF FIG. 3
WITH CONCLUDING REMARKS

Dealing with CHF of forced convection boiling in
internally and uniformly heated annuli with zero inlet
subcooling, a graphical representation of 301 data
points listed in Table 1 is made to give the result of Fig.
3. Examination of Fig. 3 breeds the following remarks.

(i) Ttis of interest to note that a number of g,, data
obtained from various independent sources [6-31]
indicate such a regular nature as shown in Fig. 3 for a
wide range of I/d,,,.. In addition, these data show a fairly
good agreement with the author’s correlation equation
(5) and (6) in the range of l/d,, = 10 to 500, but
deviation seems to appear when I/d,, decreases to the
degree of 1-5. On this point, it may not be useless to
note that when I/d,, is extremely small, boiling is close
to that on a heated rod placed in a uniform liquid flow
rather than in an annular channel.

(if) Most data in the range of l/d,, = 10-500 are
those of water, and the other test fluids are limited to
R-12 (58 data), R-114 (only 2 data) and sodium (only 4
data). Therefore, further experiments should be made
in the future with various fluids other than water.

(iii) Tt is noted that there are almost no data in L-
regime except the vicinity of the boundary between L-
and H-regime in Fig. 3, and the reason why data lacks
for L-regime is unknown. Such being the case, the
correlation equation (4) for L-regime must be regarded
as a tentative equation at present.

(iv) In cases of l/d,, = 50 and 75 in Fig. 3, a
statistical trend i1s observed that the data of R-12
appear slightly lower than those of water in H- and N-
regime.

(v) Critical heat flux in HP-regime, such as found
for forced convection boiling in tubes or in annuli with
outside heating [ 1-5], should be studied for internally
heated annuli too.
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CONFIGURATIONS GENERALES DE LA CONVECTION FORCEE
AVEC EBULLITION AU FLUX CRITIQUE, DANS UN ESPACE
ANNULAIRE VERTICAL AUTOUR D’'UNE BARRE CHAUFFEE
UNIFORMEMENT ET AVEC UN SOUS-REFROIDISSEMENT NUL A L’ENTREE

Résumé—On emploie une méthode graphique pour donner une vue d’ensemble des données existantes pour

le flux de chaleur critique (CHF) dans des espaces annulaires, verticaux, uniformément chauffés

intérieurement et avec un sous-refroidissement nul a I'entrée. 301 données sont tirées de 25 sources et ils

concernent 7 fluides différents (eau, R-12, R-114, acétone, toluéne, monoisopropylbiphényl et sodium), des

longueurs chauffées de 0,0762-8,84 m, des diamétres externes de barre chauffée entre 0,005 et 0,0964 m, des

diametres internes de tube enveloppant entre 0,0127 et 0,101 m, et des rapports vapeur/liquide depuis
0,000058 jusqu'a 0,160.

ALLGEMEINE MERKMALE DER KRITISCHEN WARMESTROMDICHTE (KWD)
BEIM STROMUNGSSIEDEN IN SENKRECHTEN KONZENTRISCHEN
RINGSPALTEN MIT GLEICHMASSIG BEHEIZTEM STAB OHNE
UNTERKUHLUNG AM EINTRITT

Zusammenfassung — Um einen allgemeinen Uberblick iiber die vorhandenen Daten fiir die kritische
Wirmestromdichte in von innen gleichméBig beheizten senkrechten Ringspalten ohne Unterkiihlung am
Eintritt zu erhalten, wurde eine grafische Methode angewandt. Aus 25 Quellen wurden 301 Angaben zu
diesem Zweck zusammengetragen. Diese umfassen : sieben verschiedene Fluide (Wasser, R12, R114, Aceton,
Toluen, Monoisopropylbiphenyl und Natrium), axiale Léngen des beheizten Stabes von 0,0762 bis 8,84 m,
duBere Durchmesser des beheizten Stabes von 0,005 bis 0,0964 m, innere Durchmesser des duBeren
Mantelrohres von 0,0127 bis 0,101 m und Dampf/Fliissigkeits-Verhiltnisse von 0,000058 bis 0,16.
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O KPUTUYECKOM TEIIJIOBOM [TOTOKE IPH KHUITEHHH B YCJIOBUAX
BBIHY>XXJJEHHOW KOHBEKLHWH B BEPTUKAJIbHBIX KOHLEHTPHUUECKHUX KAHAJIAX
C PABHOMEPHO HATPEBAEMbIM CEPJEUYHMKOM BE3 HEJOI'PEBA HA BXOIE

Aunoraums  HMcnoassys rpaduueckit Me10/L 1POBEJAEH 0030D MUMEKWILMXCH “WHHBIX U0 KpHIH-

HECKOMY TEilJIOBOMY [IOTOKY B PABHOMEPHO HATPEBACMBIX H3HYTPH KOIBIEBBIX KAHAIAX (IPH OTCYTCTBHM

Henorpepa Ha BXoje. C 1roit uedbio Oblta pi3ata 301 rouxa w3 25 nybaukaumii ags 7 xmakocted

(Bojia. R-12. R-114. aueron, toayon. Monousonponui1-Oudesnt. natpuit). JLimna varpesaemoro

cepiieuHHKA 110 OcH cocTa isna 00762 8.84 v HapykHBII AHaMeTp cepievnHKka WiMensies ot 1.00500

10 0.0964 M, BHYTpeHHUI JIHaMeTp HeHarpesaemoil TpyObl uamensiics or 0.0127 a0 0101 s, u oTHo-
UIEHHE COJIEPKAHUIA Napd H KUIKOCTH HIMEHII0Ch B ipedenax ot 0.0000580 o 0160,



